Use Case #1

Concurrently develop training sets to detect large earthquakes based on the Chile subduction zone and current station distributions.

Phase one, lift the dataflow infrastructure into the cloud, this involved a complete overhaul of VPN topologies, careful cost analysis, and appealing to diverse active user segments.

Use Case #2

Intermediate-term Events. Natural catastrophes occur at a variety of spatial and temporal scales. In particular, solid earth hazards, such as large earthquakes and volcanic eruptions, often have very long interevent times and this makes it difficult to forecast their behavior. This part of the project pulls in multiple data sets to address the long-intermediate- and short-term forecasting of these types of events. Test sites include the Yellowstone magmatic center and the Hawaiian island volcanoes.

Impact of not using precise orbit corrections in real-time processing, automated time series generation

Simulated processing using precise orbits for processing older images (timesteps 1-39) and real-time orbits for the last six timesteps

Concurrently develop training sets to detect large earthquakes based on the Chile subduction zone and current station distributions.

Phase one, lift the dataflow infrastructure into the cloud, this involved a complete overhaul of VPN topologies, careful cost analysis, and appealing to diverse active user segments.

Intermediate-term Events. Natural catastrophes occur at a variety of spatial and temporal scales. In particular, solid earth hazards, such as large earthquakes and volcanic eruptions, often have very long interevent times and this makes it difficult to forecast their behavior. This part of the project pulls in multiple data sets to address the long-intermediate- and short-term forecasting of these types of events. Test sites include the Yellowstone magmatic center and the Hawaiian island volcanoes.

Impact of not using precise orbit corrections in real-time processing, automated time series generation

Simulated processing using precise orbits for processing older images (timesteps 1-39) and real-time orbits for the last six timesteps

Use Case #2

Intermediate-term Events. Natural catastrophes occur at a variety of spatial and temporal scales. In particular, solid earth hazards, such as large earthquakes and volcanic eruptions, often have very long interevent times and this makes it difficult to forecast their behavior. This part of the project pulls in multiple data sets to address the long-intermediate- and short-term forecasting of these types of events. Test sites include the Yellowstone magmatic center and the Hawaiian island volcanoes.

Impact of not using precise orbit corrections in real-time processing, automated time series generation

Simulated processing using precise orbits for processing older images (timesteps 1-39) and real-time orbits for the last six timesteps

Use Case #1

Concurrently develop training sets to detect large earthquakes based on the Chile subduction zone and current station distributions.

Phase one, lift the dataflow infrastructure into the cloud, this involved a complete overhaul of VPN topologies, careful cost analysis, and appealing to diverse active user segments.

Intermediate-term Events. Natural catastrophes occur at a variety of spatial and temporal scales. In particular, solid earth hazards, such as large earthquakes and volcanic eruptions, often have very long interevent times and this makes it difficult to forecast their behavior. This part of the project pulls in multiple data sets to address the long-intermediate- and short-term forecasting of these types of events. Test sites include the Yellowstone magmatic center and the Hawaiian island volcanoes.

Impact of not using precise orbit corrections in real-time processing, automated time series generation

Simulated processing using precise orbits for processing older images (timesteps 1-39) and real-time orbits for the last six timesteps

Use Case #2

Intermediate-term Events. Natural catastrophes occur at a variety of spatial and temporal scales. In particular, solid earth hazards, such as large earthquakes and volcanic eruptions, often have very long interevent times and this makes it difficult to forecast their behavior. This part of the project pulls in multiple data sets to address the long-intermediate- and short-term forecasting of these types of events. Test sites include the Yellowstone magmatic center and the Hawaiian island volcanoes.

Impact of not using precise orbit corrections in real-time processing, automated time series generation

Simulated processing using precise orbits for processing older images (timesteps 1-39) and real-time orbits for the last six timesteps